๋‚ด ์ธ์ƒ์—์„œ ๋ฏฟ์„ ๊ฑด ์˜ค์ง ๋‚˜ ์ž์‹ ๋ฟ!

The only one you can truly trust is yourself.

๊ฒŒ์ž„ ํ”„๋กœ๊ทธ๋ž˜๋ฐ/์ด์‚ฐ์ˆ˜ํ•™

์ด์‚ฐ์ˆ˜ํ•™ ์š”์ ์ •๋ฆฌ (1/5)

๐ŸŽฎinspirer9 2019. 1. 2. 01:42
728x90
๋ฐ˜์‘ํ˜•

Propositional (๋ช…์ œ)

1. Statements (Propositions) / ๋ช…์ œ

  • Propositions (๋ช…์ œ) : ์ฐธ์ด๋‚˜ ๊ฑฐ์ง“์œผ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์žฅ. ๋‹จ, ๋‘˜ ๋‹ค ์ผ์ˆ˜๋Š” ์—†๋‹ค.
  • Propositional Logic (๋ช…์ œ ๋…ผ๋ฆฌ) : ๋ช…์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค.
  • Propositional Constants (๋ช…์ œ ์ƒ์ˆ˜) : T - ์ฐธ, F - ๊ฑฐ์ง“
  • Propositional Variables (๋ช…์ œ ๋ณ€์ˆ˜) : T๋‚˜ F๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜
  • Atomic Propositions (์›์ž ๋ช…์ œ) : ๋ช…์ œ ์ƒ์ˆ˜, ๋ช…์ œ ๋ณ€์ˆ˜, ๋ช…์ œ๋Š” ๋” ์„ธ๋ถ„ํ™” ๋  ์ˆ˜ ์—†๋‹ค.
  • Compound Propositions (ํ•ฉ์„ฑ ๋ช…์ œ) : ์›์ž ๋ช…์ œ๊ฐ€ ์•„๋‹Œ ๊ฒƒ์„, ๋…ผ๋ฆฌ์—ฐ์‚ฐ์ž๋กœ ์—ฐ๊ฒฐํ•œ ๊ฒƒ.

 

2. Basic logical connectives: AND, OR, NOT / ๊ธฐ๋ณธ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž

Connective pronounced Symbol in Logic
Negation NOT ยฌ, ~
Conjunction AND โˆง
Disjunction OR โˆจ
Conditional if then โ†’
Biconditional if and only if โ†”
Exclusive or eitherโ€ฆor but not both โŠ•

 

3. Translating from English to symbols / ์˜์–ด๋ฅผ ์‹ฌ๋ณผ๋กœ ๋ฒˆ์—ญํ•˜๊ธฐ

English Logic Example
And, but AND ฮ› It is hot and sunny
๋ฅ๊ณ  ํ™”์ฐฝํ•˜๋‹ค.

A: It is hot
B: It is sunny
A ฮ› B
Not NOT ยฌ It is not hot:    ยฌ A
๋ฅ์ง€ ์•Š๋‹ค
Or (inclusive) OR V It is hot or sunny
๋ฅ๊ฑฐ๋‚˜ ํ™”์ฐฝํ•˜๋‹ค

A V B
Or (exclusive) A or B but not both It is either hot or sunny
๋ฅ๊ฑฐ๋‚˜ ํ™”์ฐฝํ•˜๋‹ค. (XOR์ด๋„ค, ๋ฅ๊ณ  ํ™”์ฐฝํ•˜๋ฉด ๊ฑฐ์ง“)

(A V B) ฮ› ยฌ (A ฮ› B)
Neitherโ€ฆ nor ยฌ A ฮ› ยฌ B It is neither hot nor sunny
๋ฅ์ง€๋„ ์•Š๊ณ  ํ™”์ฐฝํ•˜์ง€๋„ ์•Š๋‹ค.

ยฌ A ฮ› ยฌ B

 

4. Truth tables / ์ง„๋ฆฌํ‘œ

  • Truth tables (์ง„๋ฆฌํ‘œ) : ๋…ผ๋ฆฌ์  ์—ฐ๊ฒฐ ์š”์†Œ์˜ ์˜๋ฏธ, ํ•ฉ์„ฑ ๋ฌธ์žฅ์˜ ํ‰๊ฐ€๋ฅผ ์ง„๋ฆฌ๊ฐ’์œผ๋กœ ์ •์˜ํ•œ ํ‘œ.
p
q
~p
pโˆงq
pโˆจq
pโŠ•q
pโ†’q
pโ†”q
T
T
F
T
T
F
T
T
T
F
F
F
T
T
F
F
F
T
T
F
T
T
T
F
F
F
T
F
F
F
T
T

 

5. Logical equivalence / ๋…ผ๋ฆฌ์  ๋™์น˜

  • 2 ๊ฐœ์˜ ๋ช…์ œ์‹ p์™€ q๋Š” ์ง„๋ฆฌํ‘œ๊ฐ€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฝ์šฐ ๋…ผ๋ฆฌ์ ์œผ๋กœ ๋™์ผํ•˜๋‹ค.
Commutative laws
P V Q โ‰ก Q V P
P ฮ› Q โ‰ก Q ฮ› P
Associative laws
(P V Q) V R โ‰ก P V (Q V R)
(P ฮ› Q) ฮ› R โ‰ก P ฮ› (Q ฮ› R)
Distributive laws:
(P V Q) ฮ› (P V R) โ‰ก P V (Q ฮ› R)
(P ฮ› Q) V (P ฮ› R) โ‰ก P ฮ› (Q V R)
Identity
P V F โ‰ก P, P ฮ› T โ‰ก P
Negation
P V ~P โ‰ก T (excluded middle)
P ฮ› ~P โ‰ก F (contradiction)
Double negation
~(~P) โ‰ก P
Idempotent laws
 
P V P โ‰ก P
P ฮ› P โ‰ก P
De Morgan's Laws
~(P V Q) โ‰ก ~P ฮ› ~Q
~(P ฮ› Q) โ‰ก ~P V ~Q
Universal bound laws (Domination)
P V T โ‰ก T
P ฮ› F โ‰ก F
Absorption Laws
P V (P ฮ› Q) โ‰ก P
P ฮ› (P V Q) โ‰ก P
Negation of T and F
~T โ‰ก F, ~F โ‰ก T

 

6. Tautologies and contradictions / ๋™์–ด๋ฐ˜๋ณต๊ณผ ๋ชจ์ˆœ

  • ๋ช…์ œ์‹ P V ยฌ P ๋Š” ๋™์–ด๋ฐ˜๋ณต. ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ P์— ๋Œ€ํ•˜์—ฌ T
  • ๋ช…์ œ์‹ P ฮ› ยฌ P ๋Š” ๋ชจ์ˆœ. ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ P์— ๋Œ€ํ•˜์—ฌ F

 

7. Implication P โ†’ Q / ํ•จ์ถ•

  • P = T ๋ฐ Q = F ์ธ ๊ฒฝ์šฐ์—๋งŒ ๊ฑฐ์ง“.
  • P ๋ฐ Q์˜ ๋‹ค๋ฅธ ๋ชจ๋“  ๊ฐ’์— ๋Œ€ํ•ด ์ฐธ.

 

8. Syllogisms / ์‚ผ๋‹จ๋…ผ๋ฒ•

8-1. Modus Ponens and Modus Tollens / ๊ธ์ •์‹๊ณผ ๋ถ€์ •์‹

Modus ponens (๊ธ์ •์‹)

(1) P์ด๋ฉด Q
(2) P
(3) ๊ทธ๋Ÿฌ๋ฏ€๋กœ Q

Modus Tollens (๋ถ€์ •์‹)

(1) P์ด๋ฉด Q
(2) ~ Q
(3) ๋”ฐ๋ผ์„œ ~ P

8-2. Disjunctive syllogism / ์„ ์–ธ์  ์‚ผ๋‹จ๋…ผ๋ฒ•

(1) P V Q
(2) ~P
(3) ๋”ฐ๋ผ์„œ ~ Q

8-3. Hypothetical syllogism / ๊ฐ€์–ธ์  ์‚ผ๋‹จ๋…ผ๋ฒ•

(1) P โ†’ Q
(2) Q โ†’ R 
(3) ๋”ฐ๋ผ์„œ P โ†’ R

 

๋‚˜๋จธ์ง€๋Š” (2/5)์—์„œ...

 

728x90
๋ฐ˜์‘ํ˜•