๋‚ด ์ธ์ƒ์—์„œ ๋ฏฟ์„ ๊ฑด ์˜ค์ง ๋‚˜ ์ž์‹ ๋ฟ!

The only one you can truly trust is yourself.

๊ฒŒ์ž„ ํ”„๋กœ๊ทธ๋ž˜๋ฐ/์ด์‚ฐ์ˆ˜ํ•™

์ด์‚ฐ์ˆ˜ํ•™ ์š”์ ์ •๋ฆฌ (1/5)

๐ŸŽฎinspirer9 2019. 1. 2. 01:42
728x90
๋ฐ˜์‘ํ˜•

Propositional (๋ช…์ œ)

1. Statements (Propositions) / ๋ช…์ œ

  • Propositions (๋ช…์ œ) : ์ฐธ์ด๋‚˜ ๊ฑฐ์ง“์œผ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์žฅ. ๋‹จ, ๋‘˜ ๋‹ค ์ผ์ˆ˜๋Š” ์—†๋‹ค.
  • Propositional Logic (๋ช…์ œ ๋…ผ๋ฆฌ) : ๋ช…์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค.
  • Propositional Constants (๋ช…์ œ ์ƒ์ˆ˜) : T - ์ฐธ, F - ๊ฑฐ์ง“
  • Propositional Variables (๋ช…์ œ ๋ณ€์ˆ˜) : T๋‚˜ F๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜
  • Atomic Propositions (์›์ž ๋ช…์ œ) : ๋ช…์ œ ์ƒ์ˆ˜, ๋ช…์ œ ๋ณ€์ˆ˜, ๋ช…์ œ๋Š” ๋” ์„ธ๋ถ„ํ™” ๋  ์ˆ˜ ์—†๋‹ค.
  • Compound Propositions (ํ•ฉ์„ฑ ๋ช…์ œ) : ์›์ž ๋ช…์ œ๊ฐ€ ์•„๋‹Œ ๊ฒƒ์„, ๋…ผ๋ฆฌ์—ฐ์‚ฐ์ž๋กœ ์—ฐ๊ฒฐํ•œ ๊ฒƒ.

 

2. Basic logical connectives: AND, OR, NOT / ๊ธฐ๋ณธ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž

Connective pronounced Symbol in Logic
Negation NOT ¬, ~
Conjunction AND
Disjunction OR
Conditional if then
Biconditional if and only if
Exclusive or either…or but not both

 

3. Translating from English to symbols / ์˜์–ด๋ฅผ ์‹ฌ๋ณผ๋กœ ๋ฒˆ์—ญํ•˜๊ธฐ

English Logic Example
And, but AND Λ It is hot and sunny
๋ฅ๊ณ  ํ™”์ฐฝํ•˜๋‹ค.

A: It is hot
B: It is sunny
A Λ B
Not NOT ¬ It is not hot:    ¬ A
๋ฅ์ง€ ์•Š๋‹ค
Or (inclusive) OR V It is hot or sunny
๋ฅ๊ฑฐ๋‚˜ ํ™”์ฐฝํ•˜๋‹ค

A V B
Or (exclusive) A or B but not both It is either hot or sunny
๋ฅ๊ฑฐ๋‚˜ ํ™”์ฐฝํ•˜๋‹ค. (XOR์ด๋„ค, ๋ฅ๊ณ  ํ™”์ฐฝํ•˜๋ฉด ๊ฑฐ์ง“)

(A V B) Λ ¬ (A Λ B)
Neither… nor ¬ A Λ ¬ B It is neither hot nor sunny
๋ฅ์ง€๋„ ์•Š๊ณ  ํ™”์ฐฝํ•˜์ง€๋„ ์•Š๋‹ค.

¬ A Λ ¬ B

 

4. Truth tables / ์ง„๋ฆฌํ‘œ

  • Truth tables (์ง„๋ฆฌํ‘œ) : ๋…ผ๋ฆฌ์  ์—ฐ๊ฒฐ ์š”์†Œ์˜ ์˜๋ฏธ, ํ•ฉ์„ฑ ๋ฌธ์žฅ์˜ ํ‰๊ฐ€๋ฅผ ์ง„๋ฆฌ๊ฐ’์œผ๋กœ ์ •์˜ํ•œ ํ‘œ.
p
q
~p
p∧q
p∨q
p⊕q
p→q
p↔q
T
T
F
T
T
F
T
T
T
F
F
F
T
T
F
F
F
T
T
F
T
T
T
F
F
F
T
F
F
F
T
T

 

5. Logical equivalence / ๋…ผ๋ฆฌ์  ๋™์น˜

  • 2 ๊ฐœ์˜ ๋ช…์ œ์‹ p์™€ q๋Š” ์ง„๋ฆฌํ‘œ๊ฐ€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฝ์šฐ ๋…ผ๋ฆฌ์ ์œผ๋กœ ๋™์ผํ•˜๋‹ค.
Commutative laws
P V Q ≡ Q V P
P Λ Q ≡ Q Λ P
Associative laws
(P V Q) V R ≡ P V (Q V R)
(P Λ Q) Λ R ≡ P Λ (Q Λ R)
Distributive laws:
(P V Q) Λ (P V R) ≡ P V (Q Λ R)
(P Λ Q) V (P Λ R) ≡ P Λ (Q V R)
Identity
P V F ≡ P, P Λ T ≡ P
Negation
P V ~P ≡ T (excluded middle)
P Λ ~P ≡ F (contradiction)
Double negation
~(~P) ≡ P
Idempotent laws
 
P V P ≡ P
P Λ P ≡ P
De Morgan's Laws
~(P V Q) ≡ ~P Λ ~Q
~(P Λ Q) ≡ ~P V ~Q
Universal bound laws (Domination)
P V T ≡ T
P Λ F ≡ F
Absorption Laws
P V (P Λ Q) ≡ P
P Λ (P V Q) ≡ P
Negation of T and F
~T ≡ F, ~F ≡ T

 

6. Tautologies and contradictions / ๋™์–ด๋ฐ˜๋ณต๊ณผ ๋ชจ์ˆœ

  • ๋ช…์ œ์‹ P V ¬ P ๋Š” ๋™์–ด๋ฐ˜๋ณต. ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ P์— ๋Œ€ํ•˜์—ฌ T
  • ๋ช…์ œ์‹ P Λ ¬ P ๋Š” ๋ชจ์ˆœ. ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ P์— ๋Œ€ํ•˜์—ฌ F

 

7. Implication P → Q / ํ•จ์ถ•

  • P = T ๋ฐ Q = F ์ธ ๊ฒฝ์šฐ์—๋งŒ ๊ฑฐ์ง“.
  • P ๋ฐ Q์˜ ๋‹ค๋ฅธ ๋ชจ๋“  ๊ฐ’์— ๋Œ€ํ•ด ์ฐธ.

 

8. Syllogisms / ์‚ผ๋‹จ๋…ผ๋ฒ•

8-1. Modus Ponens and Modus Tollens / ๊ธ์ •์‹๊ณผ ๋ถ€์ •์‹

Modus ponens (๊ธ์ •์‹)

(1) P์ด๋ฉด Q
(2) P
(3) ๊ทธ๋Ÿฌ๋ฏ€๋กœ Q

Modus Tollens (๋ถ€์ •์‹)

(1) P์ด๋ฉด Q
(2) ~ Q
(3) ๋”ฐ๋ผ์„œ ~ P

8-2. Disjunctive syllogism / ์„ ์–ธ์  ์‚ผ๋‹จ๋…ผ๋ฒ•

(1) P V Q
(2) ~P
(3) ๋”ฐ๋ผ์„œ ~ Q

8-3. Hypothetical syllogism / ๊ฐ€์–ธ์  ์‚ผ๋‹จ๋…ผ๋ฒ•

(1) P → Q
(2) Q → R 
(3) ๋”ฐ๋ผ์„œ P → R

 

๋‚˜๋จธ์ง€๋Š” (2/5)์—์„œ...

 

728x90
๋ฐ˜์‘ํ˜•