๋‚ด ์ธ์ƒ์—์„œ ๋ฏฟ์„ ๊ฑด ์˜ค์ง ๋‚˜ ์ž์‹ ๋ฟ!

The only one you can truly trust is yourself.

๊ฒŒ์ž„ ํ”„๋กœ๊ทธ๋ž˜๋ฐ/์ด์‚ฐ์ˆ˜ํ•™

์ด์‚ฐ์ˆ˜ํ•™ ์š”์ ์ •๋ฆฌ (3/5)

๐ŸŽฎinspirer9 2019. 1. 6. 00:19
728x90
๋ฐ˜์‘ํ˜•

Propositional logic ๋ช…์ œ ๋…ผ๋ฆฌ ๋ฌธ์ œ

1. ์ง„๋ฆฌ๊ฐ’ ์ž‘์„ฑ

๋ฌธ์ œ :

ํ‘œํ˜„์‹์— ํ•ด๋‹นํ•˜๋Š” ์ง„๋ฆฌ๊ฐ’์„ T ๋˜๋Š” F๋กœ ์ฑ„์šฐ์‹œ์˜ค. (์Œ์˜ ์˜์—ญ์— ์ •๋‹ต ํ‘œ์‹œ)



P



Q



expression



Value



T



T



P V Q



T



T



F



P Λ ¬ Q



T



F



T



P → Q



T



F



F



¬P ↔ Q



F

2. ๋ช…์ œ์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ

๋ฌธ์ œ:
๋‹ค์Œ์„ ๋ช…์ œ์‹์œผ๋กœ ํ‘œํ˜„ํ•˜์‹œ์˜ค.
 
"ํ†ฐ์€ ์ˆ˜ํ•™ ์ „๊ณต์ด๊ณ , ์ปดํ“จํ„ฐ ์‹ธ์ด์–ธ์Šค ์ „๊ณต์€ ์•„๋‹ˆ๋‹ค."
 
P: ํ†ฐ์€ ์ˆ˜ํ•™ ์ „๊ณต์ด๋‹ค.
Q: ํ†ฐ์€ ์ปด์‹ธ ์ „๊ณต์ด๋‹ค.
 
๋“œ ๋ชจ๋ฅด๊ฐ„์˜ ๋ฒ•์น™์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‘œํ˜„์˜ ๋ถ€์ •์„ ์ž‘์„ฑํ•˜๊ณ , ์˜๋ฏธ๋ฅผ ์ ์œผ์‹œ์˜ค.
 
๋‹ต:
๋ช…์ œ์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ
P Λ ¬ Q (ํ†ฐ์€ ์ˆ˜ํ•™ ์ „๊ณต์ด๊ณ , ์ปด์‹ธ ์ „๊ณต์€ ์•„๋‹ˆ๋‹ค.)
 
๋“œ๋ชจ๋ฅด๊ฐ„ ๋ฒ•์น™ ์ ์šฉํ•˜๊ธฐ
¬ (P Λ ¬ Q) = ¬ P V Q (๋“œ๋ชจ๋ฅด๊ฐ„ ๋ฒ•์น™)
 
c. ์˜๋ฏธ
¬ P V Q ๋Š” P → Q ์™€ ๊ฐ™๋‹ค.
๋งŒ์•ฝ ํ†ฐ์ด ์ˆ˜ํ•™ ์ „๊ณต์ด ์•„๋‹ˆ๋ฉด, ์ปด์‹ธ ์ „๊ณต์ด๋‹ค.
 

3. Let

P = "์กด์€ ๊ฑด๊ฐ•ํ•˜๋‹ค"
Q = "์กด์€ ๋ถ€์œ ํ•˜๋‹ค"
R = "์กด์€ ํ˜„๋ช…ํ•˜๋‹ค"
 
์กด์€ ๊ฑด๊ฐ•ํ•˜๊ณ , ๋ถ€์œ ํ•˜์ง€๋งŒ, ํ˜„๋ช…ํ•˜์ง€ ๋ชปํ•˜๋‹ค.
P Λ Q Λ ¬ R
 
์กด์€ ๋ถ€์ž๊ฐ€ ์•„๋‹ˆ์ง€๋งŒ, ๊ฑด๊ฐ•ํ•˜๊ณ  ํ˜„๋ช…ํ•˜๋‹ค.
¬ Q Λ P Λ R
 
์กด์€ ๊ฑด๊ฐ•ํ•˜๊ฑฐ๋‚˜ ๋ถ€์œ ํ•˜์ง€๋„ ์•Š๊ณ , ์ง€ํ˜œ๋กญ์ง€๋„ ํ•œ๋‹ค.
¬ P Λ ¬ Q Λ ¬R
 

4. ๋ฌธ์žฅ์„ ๋ช…์ œ์‹์œผ๋กœ ์ž‘์„ฑํ•ด๋ณด์ž.

๋ฌธ์ œ:
Neither the fox nor the lynx can catch the hare if the hare is alert and quick.
ํ† ๋ผ๊ฐ€ ๋†€๋ผ๊ณ  ๋น ๋ฅด๋ฉด, ์—ฌ์šฐ๋„ ์‚ด์พก์ด๋„ ํ† ๋ผ๋ฅผ ์žก์„ ์ˆ˜ ์—†๋‹ค.
 
๋‹ต:
P: The fox can catch the hare. ์—ฌ์šฐ๋Š” ํ† ๋ผ๋ฅผ ์žก์„ ์ˆ˜ ์žˆ๋‹ค.
Q: The lynx can catch the hare. ์‚ด์พก์ด๋Š” ํ† ๋ผ๋ฅผ ์žก์„ ์ˆ˜ ์žˆ๋‹ค.
R: The hare is alert. ํ† ๋ผ๋Š” ๋†€๋ž€๋‹ค.
S: The hare is quick. ํ† ๋ผ๋Š” ๋น ๋ฅด๋‹ค.
 
๋ช…์ œ์‹์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด
(R Λ S) → ~P Λ ~Q
 
~P Λ ~Q ๋Š” ~( P V Q)์™€ ๋™์ผํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋‹ค๋ฅธ ๋ฒˆ์—ญ์€
(R Λ S) → ~( P V Q)
 
 
๋ฌธ์ œ:
You can either (stay at the hotel and watch TV ) or (you can go to the museum and spend some time there)
๋‹น์‹ ์€ (ํ˜ธํ…”์— ๋จธ๋ฌด๋ฅด๋ฉด์„œ TV๋ฅผ ๋ณด๊ฑฐ๋‚˜) (๋ฐ•๋ฌผ๊ด€์— ๊ฐ€์„œ ์‹œ๊ฐ„์„ ๋ณด๋‚ด๊ฑฐ๋‚˜) ํ•  ์ˆ˜ ์žˆ๋‹ค.
 
The parentheses are used to avoid ambiguity concerning the priority of the logical connectives.
๊ด„ํ˜ธ๋Š” ๋…ผ๋ฆฌ์  ์—ฐ๊ฒฐ ์š”์†Œ์˜ ์šฐ์„  ์ˆœ์œ„์™€ ๊ด€๋ จ๋œ ๋ชจํ˜ธ์„ฑ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
 
๋‹ต:
P: You stay at the hotel. ํ˜ธํ…”์ด ๋จธ๋ฌด๋ฅธ๋‹ค.
Q: You watch TV. TV๋ฅผ ๋ณธ๋‹ค.
R: You go to the museum. ๋ฐ•๋ฌผ๊ด€์— ๊ฐ„๋‹ค.
S: You spend some time in the museum. ๋ฐ•๋ฌผ๊ด€์—์„œ ์‹œ๊ฐ„์„ ๋ณด๋‚ธ๋‹ค.
 
(P Λ Q) V (R Λ S)
 

5. ๋…ผ๋ฆฌ ๋ฒ•์น™์„ ์ ์œผ์‹œ์˜ค.

Commutative laws
P V Q ≡ Q V P
P Λ Q ≡ Q Λ P
Associative laws
(P V Q) V R ≡ P V (Q V R)
(P Λ Q) Λ R ≡ P Λ (Q Λ R)
Distributive laws:
(P V Q) Λ (P V R) ≡ P V (Q Λ R)
(P Λ Q) V (P Λ R) ≡ P Λ (Q V R)
Identity
P V F ≡ P, P Λ T ≡ P
Negation
P V ~P ≡ T (excluded middle)
P Λ ~P ≡ F (contradiction)
Double negation
~(~P) ≡ P
Idempotent laws
 
P V P ≡ P
P Λ P ≡ P
De Morgan's Laws
~(P V Q) ≡ ~P Λ ~Q
~(P Λ Q) ≡ ~P V ~Q
Universal bound laws (Domination)
P V T ≡ T
Λ F ≡ F
Absorption Laws
P V (P Λ Q) ≡ P
Λ (P V Q) ≡ P
Negation of T and F
~T ≡ F, ~F ≡ T
 

6. ์กฐ๊ฑด ๋ช…์ œ(ํ•จ์ถ•, ์กฐ๊ฑด๋ฌธ)

6.1 ๋ฌธ์ œ:
๋‹ค์Œ ์ค‘ ์กฐ๊ฑด ๋ช…์ œ P → ~Q์˜ ๋Œ€์šฐ, ์—ญ, ์ด๋ฅผ ๊ณ ๋ฅด์‹œ์˜ค.
 
๋‹ต: (์ค‘์— ๊ณ ๋ฅด์‹œ์˜ค)
P → Q, ~Q → P, ~P → ~Q, ~P → Q, ~Q → ~P, Q → ~P
 
 
6.2 ๋ฌธ์ œ:
์ฃผ์–ด์ง„ ์กฐ๊ฑด๋ฌธ "If we are on vacation we go fishing.(์šฐ๋ฆฌ๊ฐ€ ํœด๊ฐ€๋ฉด, ๋‚š์‹œํ•˜๋Ÿฌ ๊ฐ„๋‹ค.)"๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ž‘์„ฑํ•˜์‹œ์˜ค.
 
๋‹ต:
a. ๋ฌธ์žฅ์„ ๋…ผ๋ฆฌ์‹์œผ๋กœ ํ‘œํ˜„ํ•˜์‹œ์˜ค. 
P: we are on vacation. ์šฐ๋ฆฌ๊ฐ€ ํœด๊ฐ€๋‹ค.
Q: we go fishing. ์šฐ๋ฆฌ๋Š” ๋‚š์‹œํ•˜๋Ÿฌ ๊ฐ„๋‹ค.
๋…ผ๋ฆฌ์‹ : P → Q
b. ๋ถ€์ • ๋…ผ๋ฆฌ ํ‘œํ˜„์„ ์ž‘์„ฑํ•˜๊ณ , ๋ฒˆ์—ญํ•˜์‹œ์˜ค.
๋ถ€์ • : P Λ ¬ Q 
"We are on vacation and we do not go fishing."
์šฐ๋ฆฌ๊ฐ€ ํœด๊ฐ€๋ฉด, ๋‚š์‹œํ•˜๋Ÿฌ ๊ฐ€์ง€ ์•Š๋Š”๋‹ค.
c. ์—ญ ๋…ผ๋ฆฌ ํ‘œํ˜„์„ ์ž‘์„ฑํ•˜๊ณ , ๋ฒˆ์—ญํ•˜์‹œ์˜ค.
์—ญ : Q → P
"If we go fishing, we are on vacation."
๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ๋‚š์‹œํ•˜๋Ÿฌ ๊ฐ€๋ฉด, ์šฐ๋ฆฌ๋Š” ํœด๊ฐ€๋‹ค.
d. ์ด ๋…ผ๋ฆฌ ํ‘œํ˜„์„ ์ž‘์„ฑํ•˜๊ณ , ๋ฒˆ์—ญํ•˜์‹œ์˜ค.
์ด : ¬ P → ¬ Q
"If we are not on vacation, we don't go fishing."
๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ํœด๊ฐ€๊ฐ€ ์•„๋‹ˆ๋ฉด, ๋‚š์‹œํ•˜๋Ÿฌ ๊ฐ€์ง€ ์•Š๋Š”๋‹ค.
e. ๋Œ€์šฐ ๋…ผ๋ฆฌ ํ‘œํ˜„์„ ์ž‘์„ฑํ•˜๊ณ , ๋ฒˆ์—ญํ•˜์‹œ์˜ค.
๋Œ€์šฐ : ¬ Q → ¬ P
"If we don't go fishing, we are not on vacation."
๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ๋‚š์‹œํ•˜๋Ÿฌ ๊ฐ€์ง€ ์•Š์œผ๋ฉด, ์šฐ๋ฆฌ๋Š” ํœด๊ฐ€๊ฐ€ ์•„๋‹ˆ๋‹ค.
 
6.3. ๋ฌธ์ œ: 
์—ญ, ์ด, ๋Œ€์šฐ๋ฅผ ์ž‘์„ฑํ•˜์‹œ์˜ค.


 ์‹



contrapositive
(๋Œ€์šฐ)


converse
(์—ญ)



inverse
(์ด)



P → Q



~Q → ~ P



Q → P



~P → ~Q

P → ~Q Q → ~ P ~Q → P  ~P → Q


~P → Q



~ Q → P



Q → ~P



P → ~Q



~P → ~Q



Q → P



~Q → ~P



P → Q

Q → ~P P → ~Q ~P → Q ~Q → P
~Q → ~P P → Q ~P → ~Q Q → P

7. ๋‹ค์Œ์˜ ์ถ”๋ก ์ด ์œ ํšจํ•œ์ง€ ์•„๋‹Œ์ง€ ํŒ๋‹จํ•˜์‹œ์˜ค.

์ „์ œ(Premises) 1

๋ฌธ์ œ:
A. If I read the newspaper in the kitchen, my glasses would be on the kitchen table.
๋งŒ์•ฝ ๋‚ด๊ฐ€ ๋ถ€์—Œ์—์„œ ์‹ ๋ฌธ์„ ์ฝ์—ˆ๋‹ค๋ฉด, ๋‚˜์˜ ์•ˆ๊ฒฝ์€ ์‹ํƒ์— ์žˆ์„ ๊ฒƒ์ด๋‹ค.
 
B. I did not read the newspaper in the kitchen.
๋‚˜๋Š” ๋ถ€์—Œ์—์„œ ์‹ ๋ฌธ์„ ์ฝ์ง€ ์•Š์•˜๋‹ค.
 
๊ฒฐ๋ก  : My glasses are not on the kitchen table.
๋‚˜์˜ ์•ˆ๊ฒฝ์€ ๋ถ€์—Œ์— ์žˆ์ง€ ์•Š๋‹ค.
 
๋‹ต:
์œ ํšจํ•˜์ง€ ์•Š์€ ์ถ”๋ก ์ด๋‹ค.
 
P: I read the newspaper in the kitchen. ๋‚˜๋Š” ๋ถ€์—Œ์—์„œ ์‹ ๋ฌธ์„ ๋ดค๋‹ค.
Q: my glasses would be on the kitchen table. ๋‚˜์˜ ์•ˆ๊ฒฝ์€ ์‹ํƒ์— ์žˆ์„ ๊ฒƒ์ด๋‹ค.
 
์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด,
(1) P → Q
(2) ~P
(3) Therefore ~Q
 
์šฐ๋ฆฌ๋Š” P๊ฐ€ ๊ฑฐ์ง“์ด๋ž€ ๊ฒƒ์„ ์•ˆ๋‹ค.
๋งŒ์•ฝ ~P ์˜€์œผ๋ฉด Q๊ฐ€ ์–ด๋–ค ๊ฐ’์ด๋“  ์ฐธ์ด๋‹ค.
 
๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” Q๊ฐ€ ์ฐธ์ธ์ง€ ๊ฑฐ์ง“์ธ์ง€ ์•Œ ์ˆ˜ ์—†๋‹ค.
์œ„์˜ ์ถ”ํ˜ผ์€ ์—ญ ์˜ค๋ฅ˜(inverse error)๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.
 

์ „์ œ(Premises) 2

๋ฌธ์ œ:
๋‚ด๊ฐ€ ์—ด์‹ฌํžˆ ๊ณต๋ถ€ํ•˜์ง€ ์•Š์œผ๋ฉด, ๋‚˜๋Š”์ด ๊ณผ์ •์„ ํ†ต๊ณผํ•˜์ง€ ๋ชป ํ•  ๊ฒƒ์ด๋‹ค.
์ด ๊ณผ์ •์„ ํ†ต๊ณผํ•˜์ง€ ๋ชปํ•˜๋ฉด ์˜ฌํ•ด ์กธ์—… ํ•  ์ˆ˜ ์—†๋‹ค.
๊ทธ๋Ÿฌ๋ฏ€๋กœ ์—ด์‹ฌํžˆ ๊ณต๋ถ€ํ•˜์ง€ ์•Š์œผ๋ฉด ์˜ฌํ•ด ์กธ์—…ํ•˜์ง€ ๋ชป ํ•  ๊ฒƒ์ด๋‹ค.
 
๋‹ต:
์ด๊ฒƒ์€ ๊ฐ€์ƒ์  ์‚ผ๋‹จ๋…ผ๋ฒ•์— ๊ธฐ๋ฐ˜ํ•œ(based on the hypothetical syllogism) ์œ ํšจํ•œ ์ถ”๋ก ์ด๋‹ค.
 
P: I don't study hard. ๋‚˜๋Š” ์—ด์‹ฌํžˆ ๊ณต๋ถ€ํ•˜์ง€ ์•Š๋Š”๋‹ค.
Q: I will not pass this course. ๋‚˜๋Š” ์ด ๊ณผ์ •์„ ํ†ต๊ณผํ•˜์ง€ ๋ชป ํ•  ๊ฒƒ์ด๋‹ค.
R: I cannot graduate this year. ๋‚˜๋Š” ์˜ฌ ํ•ด ์กธ์—…์„ ํ•  ์ˆ˜ ์—†๋‹ค.
 
์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด,
(1) P → Q
(2) Q → R
(3) Therefore P → R
 

์ „์ œ(Premises) 3

๋ฌธ์ œ:
You will get an extra credit if you write a paper or if you solve the test problems.
์„œ๋ฅ˜๋ฅผ ์ž‘์„ฑํ•˜๊ฑฐ๋‚˜ ์‹œํ—˜ ๋ฌธ์ œ๋ฅผ ํ’€๋ฉด ์—ฌ๋ถ„์˜ ํ•™์ ์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
 
You don’t write a paper, however you get an extra credit.
๋‹น์‹ ์€ ์ข…์ด๋ฅผ ์“ฐ์ง€ ์•Š์ง€๋งŒ ์—ฌ๋ถ„์˜ ์‹ ์šฉ์„ ์–ป์Šต๋‹ˆ๋‹ค.
 
Conclusion: You have solved the test problems.
๊ฒฐ๋ก  : ํ…Œ์ŠคํŠธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ–ˆ์Šต๋‹ˆ๋‹ค.
 
๋‹ต:
์œ ํšจํ•˜์ง€ ์•Š์€ ์ถ”๋ก .
 
P: you get an extra credit
Q: you write a paper 
R: you solve the problems
 
Formal representation:
(1) (Q V R) → P
(2) ~Q
(3) P
(4) Therefore R
 
The above argument is a combination of disjunctive syllogism and modus ponens, however the modus ponens is not applied correctly.
์œ„์˜ ์ถ”๋ก ์€ ๋ถ„๋ฆฌ์ฃผ์˜ ์‚ผ๋‹จ๋…ผ๋ฒ•๊ณผ ๊ธ์ •์‹์˜ ์กฐํ•ฉ์ด์ง€๋งŒ, ๊ธ์ •์‹์ด ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ ์šฉ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. 
 
The disjunctive syllogism consists in the following:
๋ถ„๋ฆฌ์ฃผ์˜ ์‚ผ๋‹จ ๋…ผ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ตฌ์„ฑ๋œ๋‹ค.
 
Given that (Q V R) is true, and that Q is false (~Q is true) we conclude that R is true.
However we cannot know whether Q V R is true, given that P is true.
The error in concluding that Q V R is true is called converse error.
 
์ฃผ์–ด์ง„ (QVR)์ด ์ฐธ์ด๊ณ  Q๊ฐ€ ๊ฑฐ์ง“ (~ Q๋Š” ์ฐธ)์ด๋ผ๋ฉด R์€ ์ฐธ์ด๋ผ๊ณ  ๊ฒฐ๋ก ์„ ๋‚ด๋ฆฝ๋‹ˆ๋‹ค.
๊ทธ๋Ÿฌ๋‚˜ P๊ฐ€ ์‚ฌ์‹ค์ด๋ผ๋ฉด QVR์ด ์ฐธ์ธ์ง€ ์—ฌ๋ถ€๋ฅผ ์•Œ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. 
QVR์ด ์‚ฌ์‹ค์ด๋ผ๊ณ  ๊ฒฐ๋ก  ๋‚ด๋ฆด ๋•Œ์˜ ์˜ค๋ฅ˜๋ฅผ ์—ญ ์˜ค๋ฅ˜ ๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
 

์ „์ œ(Premises) 4

๋ฌธ์ œ:
You will get an extra credit if you write a paper or if you solve the test problems.
์„œ๋ฅ˜๋ฅผ ์ž‘์„ฑํ•˜๊ฑฐ๋‚˜ ์‹œํ—˜ ๋ฌธ์ œ๋ฅผ ํ’€๋ฉด ์—ฌ๋ถ„์˜ ํ•™์ ์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
 
You don’t write a paper, however you get an extra credit.
๋‹น์‹ ์€ ์ข…์ด๋ฅผ ์“ฐ์ง€ ์•Š์ง€๋งŒ ์—ฌ๋ถ„์˜ ์‹ ์šฉ์„ ์–ป์Šต๋‹ˆ๋‹ค.
 
Conclusion: You have not solved the test problems.
๊ฒฐ๋ก  : ํ…Œ์ŠคํŠธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ ๋ชป ํ–ˆ์Šต๋‹ˆ๋‹ค.
 
๋‹ต:
 
์œ ํšจํ•œ ์ถ”๋ก .
 
P: you get an extra credit
Q: you write a paper 
R: you solve the problems
 
Formal representation:
(1) (Q V R) → P
(2) ~Q
(3) ~P
(4) Therefore ~R
 
From ~P we can conclude that Q V R is false (modus tollens). 
~ P์—์„œ ์šฐ๋ฆฌ๋Š” QVR์ด ๊ฑฐ์ง“ (modus tollens)์ด๋ผ๊ณ  ๊ฒฐ๋ก ์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 
 
A disjunction is false only when both of its sides are false. Hence R must be false.
๋ถ„๋ฆฌ๋Š” ์–‘์ชฝ์ด ๋ชจ๋‘ ๊ฑฐ์ง“ ์ผ ๋•Œ๋งŒ ๊ฑฐ์ง“์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ R์€ ๊ฑฐ์ง“์ด์–ด์•ผํ•ฉ๋‹ˆ๋‹ค.
 
Note, that the premise ~Q is not necessary. Since both sides of the disjunction must be false, Q must be false too.
์ „์ œ ~ Q๋Š” ํ•„์š”ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋ถ„๋ฆฌ์˜ ์–‘์ธก์ด ํ‹€๋ฆผ์ด ํ‹€๋ฆผ ์—†์œผ๋ฏ€๋กœ Q๋„ ํ‹€๋ฆผ์ด ํ‹€๋ฆผ ์—†์Šต๋‹ˆ๋‹ค. 
 
A valid argument would be the following one:
(1) (Q V R) → P
(2) ~P
(3) Therefore ~Q and ~R
 
์œ ํšจํ•œ ์ถ”๋ก ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
(QVR) → P 
(2) ~ P 
(3) ๋”ฐ๋ผ์„œ ~ Q์™€ ~ R
 

 

 

 

Predicate logic ์ˆ ์–ด ๋…ผ๋ฆฌ ๋ฌธ์ œ

๋ฌธ์žฅ์„ ์ˆ ์–ด ๋…ผ๋ฆฌ์˜ ์ •๋Ÿ‰ํ™”๋œ ํ‘œํ˜„์œผ๋กœ ๋ฒˆ์—ญํ•˜๊ณ , ๋ถ€์ • ํ‘œํ˜„์„ ์ ์–ด ๋†“์€ ๋‹ค์Œ, ๋ถ€์ • ํ‘œํ˜„์„ ์˜์–ด๋กœ ๋ฒˆ์—ญํ•˜์‹ญ์‹œ์˜ค.
์‚ฌ์šฉ๋˜๋Š” ์ˆ ์–ด๋Š” ๊ด„ํ˜ธ ์•ˆ์— ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค.
 
1. Some problems are difficult. (problem(x), difficult(x))
 
x, (problem(x)  difficult(x))
 
๋ถ€์ •:
~($ x, (problem(x)  difficult(x))) =
" x (~(problem(x)  difficult(x))) =
" x (~problem(x) V ~ difficult(x)) =
" x (problem(x)  ~ difficult(x))
 
๋ฒˆ์—ญ: No problems are difficult.
 
2. All students that study discrete math are good at logic. 
(student(x), study_discrete_math(x), good_at_logic(x))
 
" x (student(x)  study_discrete_math(x)  good_at_logic(x))
 
๋ถ€์ •:
~ (" x (student(x)  study_discrete_math(x)  good_at_logic(x)) =
x (~ (student(x)  study_discrete_math(x)  good_at_logic(x))) =
x (~ (~( student(x)  study_discrete_math(x)) V good_at_logic(x))) =
x (~ ((~student(x) V ~study_discrete_math(x)) V good_at_logic(x))) =
x (~ ( ~student(x) V ~study_discrete_math(x) V good_at_logic(x))) =
x ((student(x)  study_discrete_math(x))  ~ good_at_logic(x)))
 
๋ฒˆ์—ญ:
There is a student that studies discrete math and is not good at logic
 
3. No students are allowed to carry guns. (student(x), carry_gun(x))
 
" x (student(x)  ~carry_gun(x))
 
๋ถ€์ •:
~(" x, (student(x)  ~carry_gun(x))) =
x, ~(student(x)  ~carry_gun(x))) =
x, ~(~student(x) V ~carry_gun(x)) =
x, (student(x)  carry_gun(x))
 
๋ฒˆ์—ญ:
There is a student that carries a gun
 
4. International students are not eligible for federal loans. 
(international_student(x), eligible(x))
 
" x (international_student(x)  ~eligible(x))
 
๋ถ€์ •:
~(" x (international_student(x)  ~eligible(x))) =
x, ~(international_student(x)  ~eligible(x)) =
x, ~(~international_student(x) V ~eligible(x)) =
x, (international_student(x)  eligible(x))
 
๋ฒˆ์—ญ:
Some international students are eligible for federal loans.

 

 

์–ด๋ ต๋‹ค ์–ด๋ ค์›Œ....

728x90
๋ฐ˜์‘ํ˜•