๋‚ด ์ธ์ƒ์—์„œ ๋ฏฟ์„ ๊ฑด ์˜ค์ง ๋‚˜ ์ž์‹ ๋ฟ!

The only one you can truly trust is yourself.

๊ฒŒ์ž„ ํ”„๋กœ๊ทธ๋ž˜๋ฐ/์ด์‚ฐ์ˆ˜ํ•™

์ด์‚ฐ์ˆ˜ํ•™ ์š”์ ์ •๋ฆฌ (2/5)

๐ŸŽฎinspirer9 2019. 1. 2. 23:42
728x90
๋ฐ˜์‘ํ˜•

Predicate logic (์ˆ ์–ด ๋…ผ๋ฆฌ)

1. Basics / ๊ธฐ์ดˆ

  • Predicates (์ˆ ์–ด) : ์†์„ฑ๊ณผ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.
  • ๋ช…์ œ์™€๋Š” ๋‹ฌ๋ฆฌ, ์ฃผ์–ด์™€ ์ˆ ์–ด๋ฅผ ๊ตฌ๋ถ„ํ•˜์—ฌ ์ฐธ ๋˜๋Š” ๊ฑฐ์ง“์„ ํŒ๋‹จํ•œ๋‹ค.
  • ์ˆ ์–ด๋Š” ํ•œ์ •๋œ ์ˆ˜์˜ ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•˜๋Š” ๋ฌธ์žฅ์ด๋ฉฐ ๋ณ€์ˆ˜์— ๋Œ€ํ•ด ํŠน์ • ๊ฐ’์ด ๋Œ€์ฒด ๋  ๋•Œ ๋ช…๋ น๋ฌธ์ด ๋œ๋‹ค.
  • ์ˆ ์–ด์—๋Š” ํ•˜๋‚˜ ์ด์ƒ์˜ ๋ณ€์ˆ˜๊ฐ€์žˆ์„ ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ : student (x), mother (x, y)
  • ์ˆ ์–ด ๊ณ„์‚ฐ (Predicate Calculus) : ๋ช…์ œ ํ•จ์ˆ˜(Propositional Function)๋ฅผ ์ด์šฉํ•œ๋‹ค.
  • ์˜ˆ) She is a student.
  • ์ฃผ์–ด : She -> x
  • ์ˆ ์–ด : is a student. -> P(x)
  • P(x) : x is a student.
  • P ์ž์ฒด๋Š” ๋ช…์ œ๊ฐ€ ์•„๋‹ˆ๊ณ , ๋ณ€์ˆ˜ x๊ฐ€ ์ ์ ˆํ•œ ๊ฐ’์œผ๋กœ ์น˜ํ™˜๋˜๋ฉด ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ช…์ œ๊ฐ€ ๋œ๋‹ค.
  • ์ˆ ์–ด ๋ณ€์ˆ˜์˜ ๋„๋ฉ”์ธ(domain)์€ ํ•ด๋‹น ๋ณ€์ˆ˜๋กœ ๋Œ€์ฒด ๋  ์ˆ˜์žˆ๋Š” ๋ชจ๋“  ๊ฐ’์˜ ์„ธํŠธ๋‹ค.
  • ์ˆ ์–ด์˜ ์ง„๋ฆฌ ์ง‘ํ•ฉ(Truth Set)์€ ์ˆ ์–ด๊ฐ€ ์ฐธ์ธ ๋ณ€์ˆ˜ ๋„๋ฉ”์ธ์˜ ๋ชจ๋“  ๊ฐ’์˜ ์ง‘ํ•ฉ์ด๋‹ค.
  • P (x) → Q (x) ๋Š” P (x)์˜ ์ง„๋ฆฌ ์ง‘ํ•ฉ์˜ ๋ชจ๋“  ์š”์†Œ๊ฐ€ Q (x) ์˜ ์ง„๋ฆฌ ์ง‘ํ•ฉ์— ์žˆ๋Š” ์š”์†Œ์ด๊ธฐ๋„ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค.
  • P (x) ↔ Q (x) ๋Š” P (x)์˜ ์ง„๋ฆฌ ์ง‘ํ•ฉ์ด Q (x)์˜ ์ง„๋ฆฌ ์ง‘ํ•ฉ๊ณผ ๋™์ผํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค.

2. Quantifiers / ํ•œ์ •์‚ฌ

  • ํ•œ์ •์‚ฌ : ๋ณ€์ˆ˜ x๊ฐ€ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๊ฐ’๋“ค์˜ ์–‘์„ ์ œํ•œํ•˜๋Š” ๊ธฐํ˜ธ
  • Universally quantified statements (์ „์ฒด ํ•œ์ • ์„œ์ˆ )
  • Universally quantifier (์ „์ฒด ์ˆ˜๋Ÿ‰์ž) ๊ธฐํ˜ธ : ∀
  • ์ˆ ์–ด P(x)๊ฐ€ x์˜ ์ „์ฒด ์ง‘ํ•ฉ U์— ๋Œ€ํ•˜์—ฌ ์„ฑ๋ฆฝํ•˜์—ฌ์•ผ ํ•œ๋‹ค.
  • ∀xP(x)์ด ์ฐธ์ด ๋˜๊ธฐ ์œ„ํ•œ ํ•„์š”์ถฉ๋ถ„ ์กฐ๊ฑด์€
  • ∀xP(x) : “๋ชจ๋“  x์— ๋Œ€ํ•˜์—ฌ P(x)๋Š” ์ฐธ์ด๋‹ค”
 
  • Existentially quantified statements (์กด์žฌ ํ•œ์ • ์„œ์ˆ )
  • Existentially quantifier (์กด์žฌ ์ˆ˜๋Ÿ‰์ž) ๊ธฐํ˜ธ : ∃
  • ∃xP(x) : “์–ด๋–ค x์— ๋Œ€ํ•˜์—ฌ P(x)๊ฐ€ ์ฐธ์ธ x๊ฐ€ ์กด์žฌํ•œ๋‹ค.”
  • ∃xP(x) ์ด ์ฐธ์ด ๋˜๊ธฐ ์œ„ํ•œ ํ•„์š” ์ถฉ๋ถ„ ์กฐ๊ฑด์€ ์ „์ฒด ์ง‘ํ•ฉ U์•ˆ์— P(x)๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๋Š” x๊ฐ€ ์ ์–ด๋„ ํ•œ ๊ฐœ ์กด์žฌํ•˜์—ฌ์•ผ ํ•œ๋‹ค.
 

์š”์•ฝ

  • ์ „์ฒด ํ•œ์ •์‚ฌ : ๋ชจ๋“  ๊ฒƒ์— ๋Œ€ํ•˜์—ฌ x๋Š” ์ฐธ์ด๋‹ค..
  • ์กด์žฌ ํ•œ์ •์‚ฌ : x๊ฐ€ ์ ์–ด๋„ ํ•˜๋‚˜๋Š” ์กด์žฌํ•œ๋‹ค.
  • ∀x ∈ H, Q(x) ๋ชจ๋“  ์ธ๊ฐ„์€ ๋™๋ฌผ์ด๋‹ค.
  • ∃x ∈ H, P(x) ์ƒ๊ฐํ•˜๋Š” ์ธ๊ฐ„์ด ์กด์žฌํ•œ๋‹ค.
  • ∀x ∈ H, ( P(x)∧Q(x)) ๋ชจ๋“  ์ธ๊ฐ„์€ ์ƒ๊ฐํ•˜๋Š” ๋™๋ฌผ์ด๋‹ค.
  • ∃x ∈ H, ~P(x) ์ƒ๊ฐํ•˜์ง€ ์•Š์€ ์ธ๊ฐ„๋„ ์žˆ๋‹ค.

3. Negation of quantifiers / ํ•œ์ •์‚ฌ์˜ ๋ถ€์ •

  • ์ „์ฒด์ˆ˜๋Ÿ‰์ž(ํ•œ์ •์ž)์˜ ๋ถ€์ •
  • ~(∀x∈ D, P(x) ) ≡ ∃x∈ D, ~P(x).
  • p(x)๊ฐ€ ์„ฑ๋ฆฝํ•˜์ง€ ์•Š๋Š” x๊ฐ€ ์กด์žฌํ•œ๋‹ค.
  • ์กด์žฌ์ˆ˜๋Ÿ‰์ž(ํ•œ์ •์ž)์˜ ๋ถ€์ •
  • ~( ∃x∈ D, P(x) ) ≡ ∀x∈ D, ~P(x).
  • ๋ชจ๋“  x๋Š” p(x)๊ฐ€ ์„ฑ๋ฆฝํ•˜์ง€ ์•Š๋Š”๋‹ค.
 

๋‚˜๋จธ์ง€๋Š” (3/5)์—์„œ... ใ… .ใ… 

Problems on Logic (๋…ผ๋ฆฌ ๋ฌธ์ œ)

1. Propositional logic / ๋ช…์ œ ๋…ผ๋ฆฌ

2. Predicate logic / ์ˆ ์–ด ๋…ผ๋ฆฌ

3. Additional problems / ์ถ”๊ฐ€ ๋ฌธ์ œ

Sequences (์‹œํ€ธ์Šค)

1. Sequences / ์‹œํ€ธ์Šค

2. Definitions / ์ •์˜

3. Recurrence relation / ๋ณต๊ท€ ๊ด€๊ณ„

4. Arithmetic and geometric sequences / ์‚ฐ์ˆ  ๋ฐ ๊ธฐํ•˜ํ•™์  ์‹œํ€ธ์Šค

5. Problems / ๋ฌธ์ œ

6. Inductive proof / ๊ท€๋‚ฉ ์ฆ๋ช…

Sets and Relations (์ง‘ํ•ฉ๊ณผ ๊ด€๊ณ„)

1. Sets, Venn diagrams / ์ง‘ํ•ฉ, ๋ฒค ๋‹ค์ด์–ด๊ทธ๋žจ

2. Basic set identities / ๊ธฐ์ดˆ ์ง‘ํ•ฉ ์•„์ด๋ดํ‹ฐํ‹ฐ

3. Set partitions, Cartesian product of sets, Power sets / ์ง‘ํ•ฉ์˜ ๋ถ„ํ• , ์ง‘ํ•ฉ์˜ ๋ฐ์นด๋ฅดํŠธ ๊ณฑ, ๋ฉฑ์ง‘ํ•ฉ

4. Relations // ๊ด€๊ณ„

5. Properties of binary relations on a set A / ์ง‘ํ•ฉ A์˜ ์ดํ•ญ ๊ด€๊ณ„ ์†์„ฑ

 

 

์ฐธ๊ณ ์ž๋ฃŒ

728x90
๋ฐ˜์‘ํ˜•