๋‚ด ์ธ์ƒ์—์„œ ๋ฏฟ์„ ๊ฑด ์˜ค์ง ๋‚˜ ์ž์‹ ๋ฟ!

The only one you can truly trust is yourself.

๊ฒŒ์ž„ ํ”„๋กœ๊ทธ๋ž˜๋ฐ/์ด์‚ฐ์ˆ˜ํ•™

์ด์‚ฐ์ˆ˜ํ•™ ์š”์ ์ •๋ฆฌ (4/5)

๐ŸŽฎinspirer9 2019. 1. 8. 21:19
728x90
๋ฐ˜์‘ํ˜•

Sequences, Recurrence relations, Induction - Overview

(์‹œํ€€์Šค, ์žฌ๊ท€๊ด€๊ณ„์‹, ์œ ๋„ - ๊ฐœ์š”)


๋ชฉ์ฐจ

1. Sequences (์‹œํ€ธ์Šค)

  • Definitions (์ •์˜)
  • Recurrence relation (์žฌ๊ท€ ๊ด€๊ณ„)
  • Arithmetic and geometric sequences (์‚ฐ์ˆ  ๋ฐ ๊ธฐํ•˜ํ•™์  ์‹œํ€ธ์Šค)
  • Problems (๋ฌธ์ œ)

2. Inductive proof (๊ท€๋‚ฉ์  ์ฆ๋ช…)


1. Sequences (์‹œํ€ธ์Šค)

1.1 Definitions (์ •์˜)

  • A set of elements written in a row.
  • ์‹œํ€ธ์Šค๋ž€ ์•„๋ž˜ ์˜ˆ์ œ์ฒ˜๋Ÿผ ์š”์†Œ๋“ค์˜ ์ง‘ํ•ฉ.

Examples:

1, 2, 3, 4, 5, 6, 7, …
2, 4, 6, 8, …
1, 3, 5, 7, 9, ….
1, 4, 9, 16, 25, ….
1, 2, 4, 8, 16, 32, ….
  • Sequences are used to describe certain regular patterns.
  • ์‹œํ€ธ์Šค๋Š” ํŠน์ • ๊ทœ์น™ ํŒจํ„ด์„ ์„ค๋ช…ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • Term: each individual element in a sequence.
  • ์šฉ๋ฒ• : ์‹œํ€€์Šค์˜ ๊ฐ ๊ฐœ๋ณ„ ์š”์†Œ.
  • General notation: a1, a2, …. an, ….
  • ์ผ๋ฐ˜์ ์ธ ํ‘œ๊ธฐ๋ฒ•์€ a1, a2, ... an, ...
  • Explicit (general) formula for a sequence: a rule that shows how the values of ak depend on k
  • ์‹œํ€€์Šค์— ๋Œ€ํ•œ ๋ช…์‹œ์ ์ธ (์ผ๋ฐ˜) ์‹ : k์— ์˜์กด์ ์ธ ak๊ฐ’์„ ์–ด๋–ป๊ฒŒ ๋ณด์—ฌ์ค„์ง€๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ทœ์น™

Examples:

Sequence Explicit formula
1, 2, 3, 4, 5, 6, 7, … a= k, k = 1, 2, 3, …
2, 4, 6, 8, … a= 2k, k = 1, 2, 3, …
1, 3, 5, 7, 9, …. a= 2k -1, k = 1, 2, 3, … or a= 2k + 1, k = 0, 1, 2, 3, …
1, 4, 9, 16, 25, …. a= k2, k = 1, 2, 3, …
1, 2, 4, 8, 16, 32, …. a= 2k, k = 0, 1, 2, 3, …
2, -2, 2, -2, …. a= 2 (-1) k, k = 0, 1, 2, 3,

 

1.2 Recurrence relation

  • Recurrence relation is a formula that relates two or more (but finite number) successive terms in a sequence.
  • Any recurrence relation is accompanied by initial condition 
  • (sometimes called terminating condition) which specifies the first term of the sequence.

Examples:

a) 1, 3, 5, …. ak,…      ak = 2k -1, k =1,2,3,…
ak = 2k - 1
ak+1 = 2(k+1) - 1 = 2k + 2 - 1 = 2k -1 + 2 = ak +2
recurrence relation: ak+1 = ak +2, k = 1, 2, 3, …
initial condition: a1 = 1

b) 1, 2, 4, 8, 16, ….      ak = 2k , k = 0, 1, 2, 3, …
ak = 2k
ak+1 =2k+1 = 2 . 2k = 2ak
recurrence relation: ak+1 = 2ak, k = 0, 1, 2, 3, …
initial condition: a0 = 1

c) 1, 1/2, 1/3, 1/4, 1/ 5, ….      ak,… ak = 1/k, k =1,2,3,…
ak = 1/k
ak+1 = 1/(k+1) = k/(k(k+1)) = ak (k/(k+1))
recurrence relation: ak+1 = ak (k/(k+1)) , k = 1, 2, 3, …
initial condition: a1 = 1

 

1.3 Arithmetic and geometric sequences

  • Look closely at the examples (a), (b), and (c) above.
  • In (a) each term is equal to the previous one plus a fixed number
  • i.e. each next term is obtained from the previous by adding a constant.
  • Such sequence is called arithmetic sequence
  • In (b) each next term is obtained from the previous one multiplied by a constant.
  • Such sequence is called geometric sequence.
  • In (c) ak+1 = ak (k/(k+1))
  • Here we multiply by k/(k+1) - this changes with k, it is not a constant, so this is not a geometric sequence. It is not arithmetic either, because we do not add a constant in the recurrence relation

 

1.4 Problems

1.4.1 Find the 5 terms of the sequences given by explicit formula

Formula Sequence
a= k2, k = 1, 2, 3, … 1, 4, 9, 16, 25
a= - 4k, k = 1, 2, 3, … -4, -8, -12, -16, -20
a= (k+1) / k, k = 1, 2, 3, … 2, 3/2, 4/3, 5/4, 6/5

1.4.2 Find an explicit formula that fits given initial terms

Initial terms explicit formula
-2, 2, -2, 2, …. a= (-1)k * 2,     k =1, 2, 3, …
1/2, 1/3, 1/4, … a= 1/(k+1),      k = 1, 2, 3, …
1, 3, 9, 27, 81, …. a= 3(k-1),         k = 1, 2, 3, …

1.4.3 Given the recurrence relation and the first term of a sequence, write the next 4 terms: (์ฃผ์–ด์ง„ ๋ฐ˜๋ณต ๊ด€๊ณ„์™€ ์‹œํ€€์Šค์˜ ์ฒซ๋ฒˆ์งธ ํ•ญ์„ ๋ณด๊ณ , ๊ทธ ๋‹ค์Œ 5๋ฒˆ์งธ ํ•ญ๊นŒ์ง€ ์ž‘์„ฑํ•˜์‹œ์˜ค.)

๋ฌธ์ œ

a1 = 1, ak+1 = ak /k, k = 1, 2, 3, …

๋‹ต

a1 = 1
a2 = 1/1 = 1
a3 = 1/2
a4 = (1/2)/3 = 1/6
a5 = (1/6)/4 = 1/24

๋ฌธ์ œ

a1 = 1, ak+1 = k ak, k = 1, 2, 3, …

๋‹ต

a1 = 1
a2 = 1 *1 = 1
a3 = 2 * 1 = 2
a4 = 3 * 2 = 6
a5 = 4 * 6 = 24

 


2. Inductive proof (๊ท€๋‚ฉ์  ์ฆ๋ช…)

  • Consider the sequence
  • 1, 3, 5, 7, ….ak,…      ak = 2k-1, k = 1, 2, 3, …
  • Prove that the sum of the first n terms is n2
  • Notation Sk = the sum of the first k terms
  • ์ฒซ ๋ฒˆ์งธ nํ•ญ์˜ ํ•ฉ์ด n2 ์ž„์„ ์ฆ๋ช…ํ•˜์‹ญ์‹œ์˜ค. ๊ธฐํ˜ธ Sk = ์ฒซ ๋ฒˆ์งธ k ํ•ญ์˜ ํ•ฉ

2.1 Inductive proof:

  • Inductive base: Proof for n = 1:

S1 = a1 = 1 = 12
Hence for n = 1, Sn = n2

  • Inductive step: We shall show that

If Sk = k2 then Sk+1 = (k+1)2

  • We use here the recurrence relation between the sums:

Sk+1 = Sk + ak+1

Sk+1 = Sk + (2k+1) =

k2 + (2k+1) = k+ 2k+1 = (k+1)2

  • By the principle of mathematical induction it follows that for any k, the sum is k2

Hence Sn = n2

2.2 Other problems:

  • Find the sum of the natural numbers 1, 2, 3, 4, 5, 6,…, n
  • Let Sn be the sum of 1, 2, 3, 4…, n

Sn = n(n+1)/2

  • Find the sum of 2 + 4 + …..+ 2n

Sn = n(n+1)

728x90
๋ฐ˜์‘ํ˜•